Not just videos!

SMPTE_Color_Bars.svg

Just a quick note that on-line learning is not just videos! I am a very strong advocate of active learning in my face-to-face practice and am working to compose on-line systems that will be as close to this as possible: learning and doing and building and thinking are all essential parts of the process.

Please, once again, check out Mark’s CACM blog on the 10 myths of teaching computer science. There’s great stuff here that extends everything I’m talking about with short video sequences and attention spans. I wrote something ages ago about not turning ‘chalk and talk’ into ‘watch and scratch (your head)’. It’s a little dated but I include it for completeness.


Collaboration and community are beautiful

There are many lessons to be learned from what is going on in the MOOC sector. The first is that we have a lot to learn, even for those of us who are committed to doing it ‘properly’ whatever that means. I’m not trying to convince you of “MOOC yes” or “MOOC no”. We can have that argument some other time. I’m talking about we already know from using these tools.

We’ve learned (again) that producing a broadcast video set of boring people reading the book at you in a monotone is, amazingly, not effective, no matter how fancy the platform. We know that MOOCs are predominantly taken by people who have already ‘succeeded’ at learning, often despite our educational system, and are thus not as likely to have an impact in traditionally disadvantaged areas, especially without an existing learning community and culture. (No references, you can Google all of this easily.)

We know that online communities can and do form. Ok, it’s not the same as twenty people in a room with you but our own work in this space confirms that you can have students experiencing a genuine feeling of belonging, facilitated through course design and forum interaction.

“Really?” you ask.

In a MOOC we ran with over 25,000 students, a student wrote a thank you note to us at the top of his code, for the final assignment. He had moved from non-coder to coder with us and had created some beautiful things. He left a note in his code because he thought that someone would read it. And we did. There is evidence of this everywhere in the forums and their code. No, we don’t have a face-to-face relationship. But we made them feel something and, from what we’ve seen so far, it doesn’t appear to be a bad something.

But we, as in the wider on-line community, have learned something else that is very important. Students in MOOCs often set their own expectations of achievement. They come in, find what they’re after, and leave, much like they are asking a question on Quora or StackExchange. Much like you check out reviews on-line before you start watching a show or you download one or two episodes to check it out. You know, 21st Century life.

Once you see that self-defined achievement and engagement, a lot of things about MOOCs, including drop rates and strange progression, suddenly make sense. As does the realisation that this is a total change from what we have accepted for centuries as desirable behaviour. This is something that we are going to have a lot of trouble fitting into our existing system. It also indicates how much work we’re going to have to do in order to bring in traditionally disadvantaged communities, first-in-family and any other under-represented group. Because they may still believe that we’re offering Perry’s nightmare in on-line form: serried ranks with computers screaming facts at you.

We offer our students a lot of choice but, as Universities, we mostly work on the idea of ‘follow this program to achieve this qualification’. Despite notionally being in the business of knowledge for the sake of knowledge, our non-award and ‘not for credit’ courses are dwarfed in enrolments by the ‘follow the track, get a prize’ streams. And that, of course, is where the diminishing bags of dollars come from. That’s why retention is such a hot-button issue at Universities because even 1% more retained students is worth millions to most Universities. A hunt and peck community? We don’t even know what retention looks like in that context.

Pretending that this isn’t happening is ignoring evidence. It’s self-deceptive, disingenuous, hypocritical (for we are supposed to be the evidence junkies) and, once again, we have a failure of educational aesthetics. Giving people what they don’t want isn’t good. Pretending that they just don’t know what’s good for them is really not being truthful. That’s three Socratic strikes: you’re out.

The Eiffel Tower, Paris, at night being struck at the apex by three bolts of lightning simultaneously.

We had better be ready to redirect that energy or explode.

We have a message from our learning community. They want some control. We have to be aware that, if we really want them to do something, they have to feel that it’s necessary. (So much research supports this.) By letting them run around in the MOOC space, artificial and heavily instrumented, we can finally see what they’re up to without having to follow them around with clipboards. We see them on the massive scale, individuals and aggregates. Remember, on average these are graduates; these are students who have already been through our machine and come out. These are the last people, if we’ve convinced them of the rightness of our structure, who should be rocking the boat and wanting to try something different. Unless, of course, we haven’t quite been meeting their true needs all these years.

I often say that the problem we have with MOOC enrolments is that we can see all of them. There is no ‘peeking around the door’ in a MOOC. You’re in or you’re out, in order to be signed up for access or updates.

If we were collaborating with all of our students to produce learning materials and structures, not just the subset who go into MOOC, I wonder what we would end up turning out? We still need to apply our knowledge of pedagogy and psychology, of course, to temper desire with what works but I suspect that we should be collaborating with our learner community in a far more open way. Everywhere else, technology is changing the relationship between supplier and consumer. Name any other industry and we can probably find a new model where consumers get more choice, more knowledge and more power.

No-one (sensible) is saying we should raze the Universities overnight. I keep being told that allowing more student control is going to lead to terrible things but, frankly, I don’t believe it and I don’t think we have enough evidence to stop us from at least exploring this path. I think it’s scary, yes. I think it’s going to challenge how we think about tertiary education, absolutely. I also think that we need to work out how we can bring together the best of face-to-face with the best of on-line, for the most people, in the most educationally beautiful way. Because anything else just isn’t that beautiful.


Teaching for (current) Humans

da Vinci's Vitrvuian Man. Human figure with arms and legs outstretched showing the ratios of the perfect form.

Leonardo’s experiments in human-octopus engineering never received appropriate recognition.

I was recently at a conference-like event where someone stood up and talked about video lectures. And these lectures were about 40 minutes long.

Over several million viewing sessions, EdX have clearly shown that watchable video length tops out at just over 6 minutes. And that’s the same for certificate-earning students and the people who have enrolled for fun. At 9 minutes, students are watching for fewer than 6 minutes. At the 40 minute mark, it’s 3-4 minutes.

I raised this point to the speaker because I like the idea that, if we do on-line it should be good on-line, and I got a response that was basically “Yes, I know that but I think the students should be watching these anyway.” Um. Six minutes is the limit but, hey, students, sit there for this time anyway.

We have never been able to unobtrusively measure certain student activities as well as we can today. I admit that it’s hard to measure actual attention by looking at video activity time but it’s also hard to measure activity by watching students in a lecture theatre. When we add clickers to measure lecture activity, we change the activity and, unsurprisingly, clicker-based assessment of lecture attentiveness gives us different numbers to observation of note-taking. We can monitor video activity by watching what the student actually does and pausing/stopping a video is a very clear signal of “I’m done”. The fact that students are less likely to watch as far on longer videos is a pretty interesting one because it implies that students will hold on for a while if the end is in sight.

In a lecture, we think students fade after about 15-20 minutes but, because of physical implications, peer pressure, politeness and inertia, we don’t know how many students have silently switched off before that because very few will just get up and leave. That 6 minute figure may be the true measure of how long a human will remain engaged in this kind of task when there is no active component and we are asking them to process or retain complex cognitive content. (Speculation, here, as I’m still reading into one of these areas but you see where I’m going.) We know that cognitive load is a complicated thing and that identifying subgoals of learning makes a difference in cognitive load (Morrison, Margulieux, Guzdial)  but, in so many cases, this isn’t what is happening in those long videos, they’re just someone talking with loose scaffolding. Having designed courses with short videos I can tell you that it forces you, as the designer and teacher, to focus on exactly what you want to say and it really helps in making your points, clearly. Implicit sub-goal labelling, anyone? (I can hear Briana and Mark warming up their keyboards!)

If you want to make your videos 40 minutes long, I can’t stop you. But I can tell you that everything I know tells me that you have set your materials up for another hominid species because you’re not providing something that’s likely to be effective for current humans.

 


Musings of an Amateur Mythographer I: Islands of Certainty in a Sea of Confusion

If that's the sea of confusion, I'll be floating in it for a while. (Wikipedia - Mokoli'i)

If that’s the sea of confusion, I’ll be floating in it for a while. (Wikipedia – Mokoli’i)

I’ve been doing a lot of reading recently on the classification of knowledge, the development of scientific thinking, the ways different cultures approach learning, and the relationship between myths and science. Now, some of you are probably wondering why I can’t watch “Agents of S.H.I.E.L.D.” like a normal person but others of you have already started to shift uneasily because I’ve talked about a relationship between myths and science, as if we do not consider science to be the natural successor to preceding myths. Well, let me go further. I’m about to start drawing on thinking on myths and science and even how the myths that teach us about the importance of evidence, the foundation of science, but for their own purposes.

Why?

Because much of what we face as opposition in educational research are pre-existing stereotypes and misconceptions that people employ, where there’s a lack of (and sometimes in the face of) evidence. Yet this collection of beliefs is powerful because it prevents people from adopting verified and validated approaches to learning and teaching. What can we call these? Are these myths? What do I even mean by that term?

It’s important to realise that the use of the term myth has evolved from earlier, rather condescending, classifications of any culture’s pre-scientific thinking as being dismissively primitive and unworthy of contemporary thought. This is a rich topic by itself but let me refer to Claude Lévi-Strauss and his identification of myth as being a form of thinking and classification, rather than simple story-telling, and thus proto-scientific, rather than anti-scientific. I note that I have done the study of mythology a grave disservice with such an abbreviated telling. Further reading here to understand precisely what Lévi-Strauss was refuting could involve Tylor, Malinowski, and Lévy-Bruhl. This includes rejecting a knee-jerk classification of a less scientifically advanced people as being emotional and practical, rather than (even being capable of) being intellectual. By moving myth forms to an intellectual footing, Lévi-Strauss allows a non-pejorative assessment of the potential value of myth forms.

In many situations, we consider myth and folklore as the same thing, from a Western post-Enlightenment viewpoint, only accepting those elements that we can validate. Thus, we choose not to believe that Olympus holds the Greek Pantheon as we cannot locate the Gods reliably, but the pre-scientific chewing of willow bark to relieve pain was validated once we constructed aspirin (and willow bark tea). It’s worth noting that the early location of willow bark as part of its scientific ‘discovery’ was inspired by an (effectively random) approach called the doctrine of signatures, which assumed that the cause and the cure of diseases would be located near each other. The folkloric doctrine of signatures led the explorers to a plant that tasted like another one but had a different use.

Myth, folklore and science, dancing uneasily together. Does this mean that what we choose to call myth now may or may not be myth in the future? We know that when to use it, to recommend it, in our endorsed and academic context is usually to require it to become science. But what is science?

Karl Popper’s (heavily summarised) view is that we have a set of hypotheses that we test to destruction and this is the foundation of our contemporary view of science. If the evidence we have doesn’t fit the hypothesis then we must reject the hypothesis. When we have enough evidence, and enough hypotheses, we have a supported theory. However, this has a natural knock-on effect in that we cannot actually prove anything, we just have enough evidence to support the hypothesis. Kuhn (again, heavily summarised) has a model of “normal science” where there is a large amount of science as in Popper’s model, incrementing a body of existing work, but there are times when this continuity gives way to a revolutionary change. At these times, we see an accumulation of contradictory evidence that illustrates that it’s time to think very differently about the world. Ultimately, we discover the need for a new coherency, where we need new exemplars to make the world make sense. (And, yes, there’s still a lot of controversy over this.)

Let me attempt to bring this all together, finally. We, as humans, live in a world full of information and some of it, even in our post-scientific world, we incorporate into our lives without evidence and some we need evidence to accept. Do you want some evidence that we live our lives without, or even in spite of, evidence? The median length for a marriage in the United States is 11 years and 40-50% of marriages will end in divorce yet many still swear ‘until death do us part’ or ‘all of my days’. But the myth of ‘marriage forever’ is still powerful. People have children, move, buy houses and totally change their lives based on this myth. The actions that people take here will have a significant impact on the world around them and yet it seems at odd with the evidence. (Such examples are not uncommon and, in a post-scientific revolution world, must force us to consider earlier suggestions that myth-based societies move seamlessly to a science-based intellectual utopia. This is why Lévi-Strauss is interesting to read. Our evidence is that our evidence is not sufficient evidence, so we must seek to better understand ourselves.) Even those components of our shared history and knowledge that are constructed to be based on faith, such as religion, understand how important evidence is to us. Let me give an example.

In the fourth book of the New Testament of the Christian Bible, the Gospel of John, we find the story of the Resurrection of Lazarus. Lazarus is sick and Jesus Christ waits until he dies to go to where he is buried and raise him. Jesus deliberately delays because the glory to the Christian God will be far greater and more will believe, if Lazarus is raised from the dead, rather than just healed from illness. Ultimately, and I do not speak for any religious figure or God here, anyone can get better from an illness but to be raised from the dead (currently) requires a miracle. Evidence, even in a book written for the faithful and to build faith, is important to humans.

We also know that there is a very large amount of knowledge that is accepted as being supported by evidence but the evidence is really anecdotal, based on bias and stereotype, and can even be distorted through repetition. This is the sea of confusion that we all live in. The scientific method (Popper) is one way that we can try to find firm ground to stand on but, if Kuhn is to be believed, there is the risk that one day we stand on the islands and realise that the truth was the sea all along. Even with Popper, we risk standing on solid ground that turns out to be meringue. How many of these changes can one human endure and still be malleable and welcoming in the face of further change?

Our problem with myth is when it forces us to reject something that we can demonstrate to be both valuable and scientifically valid because, right now, the world that we live in is constructed on scientific foundations and coherence is maintained by adding to those foundations. Personally, I don’t believe that myth and science have to be at odds (many disagree with me, including Richard Dawkins of course), and that this is an acceptable view as they are already co-existing in ways that actively shape society, for both good and ill.

Recently I made a comment on MOOCs that contradicted something someone said and I was (quite rightly) asked to provide evidence to support my assertions. That is the post before this one and what you will notice is that I do not have a great deal of what we would usually call evidence: no double-blind tests, no large-n trials with well-formed datasets. I had some early evidence of benefit, mostly qualitative and relatively soft, but, and this is important to me, what I didn’t have was evidence of harm. There are many myths around MOOCs and education in general. Some of them fall into the realm of harmful myths, those that cause people to reject good approaches to adhere to old and destructive practices. Some of them are harmful because they cause us to reject approaches that might work because we cannot find the evidence we need.

I am unsurprised that so many people adhere to folk pedagogy, given the vast amounts of information out there and the natural resistance to rejecting something that you think works, especially when someone sails in and tells you’ve been wrong for years. The fact that we are still discussing the nature of myth and science gives insight into how complicated this issue is.

I think that the path I’m on could most reasonably be called that of the mythographer, but the cataloguing of the edges of myth and the intersections of science is not in order to condemn one or the other but to find out what the truth is to the best of our knowledge. I think that understanding why people believe what they believe allows us to understand what they will need in order to believe something that is actually, well, true. There are many articles written on this, on the difficulty of replacing one piece of learning with another and the dangers of repetition in reinforcing previously-held beliefs, but there is hope in that we can construct new elements to replace old information if we are careful and we understand how people think.

We need to understand the delicate relationships between myth, folklore and science, our history as separate and joined peoples, if only to understand when we have achieved new forms of knowing. But we also need to be more upfront about when we believe we have moved on, including actively identifying areas that we have labelled as “in need of much more evidence” (such as learning styles, for example) to assist people in doing valuable work if they wish to pursue research.

I’ll go further. If we have areas where we cannot easily gain evidence, yet we have competing myths in that space, what should we do? How do we choose the best approach to achieve the most effective educational outcomes? I’ll let everyone argue in the comments for a while and then write that as the next piece.


Designing a MOOC: how far did it reach? #csed

Mark Guzdial posted over on his blog on “Moving Beyond MOOCS: Could we move to understanding learning and teaching?” and discusses aspects (that still linger) of MOOC hype. (I’ve spoken about MOOCs done badly before, as well as recording the thoughts of people like Hugh Davis from Southampton.) One of Mark’s paragraphs reads:

“The value of being in the front row of a class is that you talk with the teacher.  Getting physically closer to the lecturer doesn’t improve learning.  Engagement improves learning.  A MOOC puts everyone at the back of the class, listening only and doing the homework”

My reply to this was:

“You can probably guess that I have two responses here, the first is that the front row is not available to many in the real world in the first place, with the second being that, for far too many people, any seat in the classroom is better than none.

But I am involved in a, for us, large MOOC so my responses have to be regarded in that light. Thanks for the post!”

Mark, of course, called my bluff and responded with:

“Nick, I know that you know the literature in this space, and care about design and assessment. Can you say something about how you designed your MOOC to reach those who would not otherwise get access to formal educational opportunities? And since your MOOC has started, do you know yet if you achieved that goal — are you reaching people who would not otherwise get access?”

So here is that response. Thanks for the nudge, Mark! The answer is a bit long but please bear with me. We will be posting a longer summary after the course is completed, in a month or so. Consider this the unedited taster. I’m putting this here, early, prior to the detailed statistical work, so you can see where we are. All the numbers below are fresh off the system, to drive discussion and answering Mark’s question at, pretty much, a conceptual level.

First up, as some background for everyone, the MOOC team I’m working with is the University of Adelaide‘s Computer Science Education Research group, led by A/Prof Katrina Falkner, with me (Dr Nick Falkner), Dr Rebecca Vivian, and Dr Claudia Szabo.

I’ll start by noting that we’ve been working to solve the inherent scaling issues in the front of the classroom for some time. If I had a class of 12 then there’s no problem in engaging with everyone but I keep finding myself in rooms of 100+, which forces some people to sit away from me and also limits the number of meaningful interactions I can make to individuals in one setting. While I take Mark’s point about the front of the classroom, and the associated research is pretty solid on this, we encountered an inherent problem when we identified that students were better off down the front… and yet we kept teaching to rooms with more student than front. I’ll go out on a limb and say that this is actually a moral issue that we, as a sector, have had to look at and ignore in the face of constrained resources. The nature of large spaces and people, coupled with our inability to hover, means that we can either choose to have a row of students effectively in a semi-circle facing us, or we accept that after a relatively small number of students or number of rows, we have constructed a space that is inherently divided by privilege and will lead to disengagement.

So, Katrina’s and my first foray into this space was dealing with the problem in the physical lecture spaces that we had, with the 100+ classes that we had.

Katrina and I published a paper on “contributing student pedagogy” in Computer Science Education 22 (4), 2012, to identify ways for forming valued small collaboration groups as a way to promote engagement and drive skill development. Ultimately, by reducing the class to a smaller number of clusters and making those clusters pedagogically useful, I can then bring the ‘front of the class’-like experience to every group I speak to. We have given talks and applied sessions on this, including a special session at SIGCSE, because we think it’s a useful technique that reduces the amount of ‘front privilege’ while extending the amount of ‘front benefit’. (Read the paper for actual detail – I am skimping on summary here.)

We then got involved in the support of the national Digital Technologies curriculum for primary and middle school teachers across Australia, after being invited to produce a support MOOC (really a SPOC, small, private, on-line course) by Google. The target learners were teachers who were about to teach or who were teaching into, initially, Foundation to Year 6 and thus had degrees but potentially no experience in this area. (I’ve written about this before and you can find more detail on this here, where I also thanked my previous teachers!)

The motivation of this group of learners was different from a traditional MOOC because (a) everyone had both a degree and probable employment in the sector which reduced opportunistic registration to a large extent and (b) Australian teachers are required to have a certain number of professional development (PD) hours a year. Through a number of discussions across the key groups, we had our course recognised as PD and this meant that doing our course was considered to be valuable although almost all of the teachers we spoke to were furiously keen for this information anyway and my belief is that the PD was very much ‘icing’ rather than ‘cake’. (Thank you again to all of the teachers who have spent time taking our course – we really hope it’s been useful.)

To discuss access and reach, we can measure teachers who’ve taken the course (somewhere in the low thousands) and then estimate the number of students potentially assisted and that’s when it gets a little crazy, because that’s somewhere around 30-40,000.

In his talk at CSEDU 2014, Hugh Davis identified the student groups who get involved in MOOCs as follows. The majority of people undertaking MOOCs were life-long learners (older, degreed, M/F 50/50), people seeking skills via PD, and those with poor access to Higher Ed. There is also a small group who are Uni ‘tasters’ but very, very small. (I think we can agree that tasting a MOOC is not tasting a campus-based Uni experience. Less ivy, for starters.) The three approaches to the course once inside were auditing, completing and sampling, and it’s this final one that I want to emphasise because this brings us to one of the differences of MOOCs. We are not in control of when people decide that they are satisfied with the free education that they are accessing, unlike our strong gatekeeping on traditional courses.

I am in total agreement that a MOOC is not the same as a classroom but, also, that it is not the same as a traditional course, where we define how the student will achieve their goals and how they will know when they have completed. MOOCs function far more like many people’s experience of web browsing: they hunt for what they want and stop when they have it, thus the sampling engagement pattern above.

(As an aside, does this mean that a course that is perceived as ‘all back of class’ will rapidly be abandoned because it is distasteful? This makes the student-consumer a much more powerful player in their own educational market and is potentially worth remembering.)

Knowing these different approaches, we designed the individual subjects and overall program so that it was very much up to the participant how much they chose to take and individual modules were designed to be relatively self-contained, while fitting into a well-designed overall flow that built in terms of complexity and towards more abstract concepts. Thus, we supported auditing, completing and sampling, whereas our usual face-to-face (f2f) courses only support the first two in a way that we can measure.

As Hugh notes, and we agree through growing experience, marking/progress measures at scale are very difficult, especially when automated marking is not enough or not feasible. Based on our earlier work in contributing collaboration in the class room, for the F-6 Teacher MOOC we used a strong peer-assessment model where contributions and discussions were heavily linked. Because of the nature of the cohort, geographical and year-level groups formed who then conducted additional sessions and produced shared material at a slightly terrifying rate. We took the approach that we were not telling teachers how to teach but we were helping them to develop and share materials that would assist in their teaching. This reduced potential divisions and allows us to establish a mutually respectful relationship that facilitated openness.

(It’s worth noting that the courseware is creative commons, open and free. There are people reassembling the course for their specific take on the school system as we speak. We have a national curriculum but a state-focused approach to education, with public and many independent systems. Nobody makes any money out of providing this course to teachers and the material will always be free. Thank you again to Google for their ongoing support and funding!)

Overall, in this first F-6 MOOC, we had higher than usual retention of students and higher than usual participation, for the reasons I’ve outlined above. But this material was for curriculum support for teachers of young students, all of whom were pre-programming, and it could be contained in videos and on-line sharing of materials and discussion. We were also in the MOOC sweet-spot: existing degreed learners, PD driver, and their PD requirement depended on progressive demonstration on goal achievement, which we recognised post-course with a pre-approved certificate form. (Important note: if you are doing this, clear up how the PD requirements are met and how they need to be reported back, as early on as you can. It meant that we could give people something valuable in a short time.)

The programming MOOC, Think. Create. Code on EdX, was more challenging in many regards. We knew we were in a more difficult space and would be more in what I shall refer to as ‘the land of the average MOOC consumer’. No strong focus, no PD driver, no geographically guaranteed communities. We had to think carefully about what we considered to be useful interaction with the course material. What counted as success?

To start with, we took an image-based approach (I don’t think I need to provide supporting arguments for media-driven computing!) where students would produce images and, over time, refine their coding skills to produce and understand how to produce more complex images, building towards animation. People who have not had good access to education may not understand why we would use programming in more complex systems but our goal was to make images and that is a fairly universally understood idea, with a short production timeline and very clear indication of achievement: “Does it look like a face yet?”

In terms of useful interaction, if someone wrote a single program that drew a face, for the first time – then that’s valuable. If someone looked at someone else’s code and spotted a bug (however we wish to frame this), then that’s valuable. I think that someone writing a single line of correct code, where they understand everything that they write, is something that we can all consider to be valuable. Will it get you a degree? No. Will it be useful to you in later life? Well… maybe? (I would say ‘yes’ but that is a fervent hope rather than a fact.)

So our design brief was that it should be very easy to get into programming immediately, with an active and engaged approach, and that we have the same “mostly self-contained week” approach, with lots of good peer interaction and mutual evaluation to identify areas that needed work to allow us to build our knowledge together. (You know I may as well have ‘social constructivist’ tattooed on my head so this is strongly in keeping with my principles.) We wrote all of the materials from scratch, based on a 6-week program that we debated for some time. Materials consisted of short videos, additional material as short notes, participatory activities, quizzes and (we planned for) peer assessment (more on that later). You didn’t have to have been exposed to “the lecture” or even the advanced classroom to take the course. Any exposure to short videos or a web browser would be enough familiarity to go on with.

Our goal was to encourage as much engagement as possible, taking into account the fact that any number of students over 1,000 would be very hard to support individually, even with the 5-6 staff we had to help out. But we wanted students to be able to develop quickly, share quickly and, ultimately, comment back on each other’s work quickly. From a cognitive load perspective, it was crucial to keep the number of things that weren’t relevant to the task to a minimum, as we couldn’t assume any prior familiarity. This meant no installers, no linking, no loaders, no shenanigans. Write program, press play, get picture, share to gallery, winning.

As part of this, our support team (thanks, Jill!) developed a browser-based environment for Processing.js that integrated with a course gallery. Students could save their own work easily and share it trivially. Our early indications show that a lot of students jumped in and tried to do something straight away. (Processing is really good for getting something up, fast, as we know.) We spent a lot of time testing browsers, testing software, and writing code. All of the recorded materials used that development environment (this was important as Processing.js and Processing have some differences) and all of our videos show the environment in action. Again, as little extra cognitive load as possible – no implicit requirement for abstraction or skills transfer. (The AdelaideX team worked so hard to get us over the line – I think we may have eaten some of their brains to save those of our students. Thank you again to the University for selecting us and to Katy and the amazing team.)

The actual student group, about 20,000 people over 176 countries, did not have the “built-in” motivation of the previous group although they would all have their own levels of motivation. We used ‘meet and greet’ activities to drive some group formation (which worked to a degree) and we also had a very high level of staff monitoring of key question areas (which was noted by participants as being very high for EdX courses they’d taken), everyone putting in 30-60 minutes a day on rotation. But, as noted before, the biggest trick to getting everyone engaged at the large scale is to get everyone into groups where they have someone to talk to. This was supposed to be provided by a peer evaluation system that was initially part of the assessment package.

Sadly, the peer assessment system didn’t work as we wanted it to and we were worried that it would form a disincentive, rather than a supporting community, so we switched to a forum-based discussion of the works on the EdX discussion forum. At this point, a lack of integration between our own UoA programming system and gallery and the EdX discussion system allowed too much distance – the close binding we had in the R-6 MOOC wasn’t there. We’re still working on this because everything we know and all evidence we’ve collected before tells us that this is a vital part of the puzzle.

In terms of visible output, the amount of novel and amazing art work that has been generated has blown us all away. The degree of difference is huge: armed with approximately 5 statements, the number of different pieces you can produce is surprisingly large. Add in control statements and reputation? BOOM. Every student can write something that speaks to her or him and show it to other people, encouraging creativity and facilitating engagement.

From the stats side, I don’t have access to the raw stats, so it’s hard for me to give you a statistically sound answer as to who we have or have not reached. This is one of the things with working with a pre-existing platform and, yes, it bugs me a little because I can’t plot this against that unless someone has built it into the platform. But I think I can tell you some things.

I can tell you that roughly 2,000 students attempted quiz problems in the first week of the course and that over 4,000 watched a video in the first week – no real surprises, registrations are an indicator of interest, not a commitment. During that time, 7,000 students were active in the course in some way – including just writing code, discussing it and having fun in the gallery environment. (As it happens, we appear to be plateauing at about 3,000 active students but time will tell. We have a lot of post-course analysis to do.)

It’s a mistake to focus on the “drop” rates because the MOOC model is different. We have no idea if the people who left got what they wanted or not, or why they didn’t do anything. We may never know but we’ll dig into that later.

I can also tell you that only 57% of the students currently enrolled have declared themselves explicitly to be male and that is the most likely indicator that we are reaching students who might not usually be in a programming course, because that 43% of others, of whom 33% have self-identified as women, is far higher than we ever see in classes locally. If you want evidence of reach then it begins here, as part of the provision of an environment that is, apparently, more welcoming to ‘non-men’.

We have had a number of student comments that reflect positive reach and, while these are not statistically significant, I think that this also gives you support for the idea of additional reach. Students have been asking how they can save their code beyond the course and this is a good indicator: ownership and a desire to preserve something valuable.

For student comments, however, this is my favourite.

I’m no artist. I’m no computer programmer. But with this class, I see I can be both. #processingjs (Link to student’s work) #code101x .

That’s someone for whom this course had them in the right place in the classroom. After all of this is done, we’ll go looking to see how many more we can find.

I know this is long but I hope it answered your questions. We’re looking forward to doing a detailed write-up of everything after the course closes and we can look at everything.


Think. Create. Code. Vis! (@edXOnline, @UniofAdelaide, @cserAdelaide, @code101x, #code101x)

I just posted about the massive growth in our new on-line introductory programming course but let’s look at the numbers so we can work out what’s going on and, maybe, what led to that level of success. (Spoilers: central support from EdX helped a huge amount.) So let’s get to the data!

I love visualised data so let’s look at the growth in enrolments over time – this is really simple graphical stuff as we’re spending time getting ready for the course at the moment! We’ve had great support from the EdX team through mail-outs and Twitter and you can see these in the ‘jumps’ in the data that occurred at the beginning, halfway through April and again at the end. Or can you?

Rapid growth in enrolment!

Rapid growth in enrolment! But it’s a little hard to see in this data.

Hmm, this is a large number, so it’s not all that easy to see the detail at the end. Let’s zoom in and change the layout of the data over to steps so we can things more easily. (It’s worth noting that I’m using the free R statistical package to do all of this. I can change one line in my R program and regenerate all of my graphs and check my analysis. When you can program, you can really save time on things like this by using tools like R.)

Screen Shot 2015-04-30 at 2.40.24 pm
Now you can see where that increase started and then the big jump around the time that e-mail advertising started, circled. That large spike at the end is around 1500 students, which means that we jumped 10% in a day.

When we started looking at this data, we wanted to get a feeling for how many students we might get. This is another common use of analysis – trying to work out what is going to happen based on what has already happened.

As a quick overview, we tried to predict the future based on three different assumptions:

  1. that the growth from day to day would be roughly the same, which is assuming linear growth.
  2. that the growth would increase more quickly, with the amount of increase doubling every day (this isn’t the same as the total number of students doubling every day).
  3. that the growth would increase even more quickly than that, although not as quickly as if the number of students were doubling every day.

If Assumption 1 was correct, then we would expect the graph to look like a straight line, rising diagonally. It’s not. (As it is, this model predicted that we would only get 11,780 students. We crossed that line about 2 weeks ago.

So we know that our model must take into account the faster growth, but those leaps in the data are changes that caused by things outside of our control – EdX sending out a mail message appears to cause a jump that’s roughly 800-1,600 students, and it persists for a couple of days.

Let’s look at what the models predicted. Assumption 2 predicted a final student number around 15,680. Uhh. No. Assumption 3 predicted a final student number around 17,000, with an upper bound of 17,730.

Hmm. Interesting. We’ve just hit 17,571 so it looks like all of our measures need to take into account the “EdX” boost. But, as estimates go, Assumption 3 gave us a workable ballpark and we’ll probably use it again for the next time that we do this.

Now let’s look at demographic data. We now we have 171-172 countries (it varies a little) but how are we going for participation across gender, age and degree status? Giving this information to EdX is totally voluntary but, as long as we take that into account, we make some interesting discoveries.

Age demographic data from EdX

Age demographic data from EdX

Our median student age is 25, with roughly 40% under 25 and roughly 40% from 26 to 40. That means roughly 20% are 41 or over. (It’s not surprising that the graph sits to one side like that. If the left tail was the same size as the right tail, we’d be dealing with people who were -50.)

The gender data is a bit harder to display because we have four categories: male, female, other and not saying. In terms of female representation, we have 34% of students who have defined their gender as female. If we look at the declared male numbers, we see that 58% of students have declared themselves to be male. Taking into account all categories, this means that our female participant percentage could be as high as 40% but is at least 34%. That’s much higher than usual participation rates in face-to-face Computer Science and is really good news in terms of getting programming knowledge out there.

We’re currently analysing our growth by all of these groupings to work out which approach is the best for which group. Do people prefer Twitter, mail-out, community linkage or what when it comes to getting them into the course.

Anyway, lots more to think about and many more posts to come. But we’re on and going. Come and join us!


Think. Create. Code. Wow! (@edXOnline, @UniofAdelaide, @cserAdelaide, @code101x, #code101x)

Screenshot of our EdX page.

Screenshot of our EdX page. Shiny!

Things are really exciting here because, after the success of our F-6 on-line course to support teachers for digital technologies, the Computer Science Education Research group are launching their first massive open on-line course (MOOC) through AdelaideX, the partnership between the University of Adelaide and EdX. (We’re also about to launch our new 7-8 course for teachers – watch this space!)

Our EdX course is called “Think. Create. Code.” and it’s open right now for Week 0, although the first week of real content doesn’t go live until the 30th. If you’re not already connected with us, you can also follow us on Facebook (code101x) or Twitter (@code101x), or search for the hashtag #code101x. (Yes, we like to be consistent.)

I am slightly stunned to report that, less than 24 hours before the first content starts to roll out, that we have 17,531 students enrolled, across 172 countries. Not only that, but when we look at gender breakdown, we have somewhere between 34-42% women (not everyone chooses to declare a gender). For an area that struggles with female participation, this is great news.

I’ll save the visualisation data for another post, so let’s quickly talk about the MOOC itself. We’re taking a 6 week approach, where students focus on developing artwork and animation using the Processing language, but it requires no prior knowledge and runs inside a browser. The interface that has been developed by the local Adelaide team (thank you for all of your hard work!) is outstanding and it’s really easy to make things happen.

I love this! One of the biggest obstacles to coding is having to wait until you see what happens and this can lead to frustration and bad habits. In Processing you can have a circle on the screen in a matter of seconds and you can start playing with colour in the next second. There’s a lot going on behind the screen to make it this easy but the student doesn’t need to know it and can get down to learning. Excellent!

I went to a great talk at CSEDU last year, presented by Hugh Davis from Southampton, where Hugh raised some great issues about how MOOCs compared to traditional approaches. I’m pleased to say that our demography is far more widespread than what was reported there. Although the US dominates, we have large representations from India, Asia, Europe and South America, with a lot of interest from Africa. We do have a lot of students with prior degrees but we also have a lot of students who are at school or who aren’t at University yet. It looks like the demography of our programming course is much closer to the democratic promise of free on-line education but we’ll have to see how that all translates into participation and future study.

While this is an amazing start, the whole team is thinking of this as part of a project that will be going on for years, if not decades.

When it came to our teaching approach, we spent a lot of time talking (and learning from other people and our previous attempts) about the pedagogy of this course: what was our methodology going to be, how would we implement this and how would we make it the best fit for this approach? Hugh raised questions about the requirement for pedagogical innovation and we think we’ve addressed this here through careful customisation and construction (we are working within a well-defined platform so that has a great deal of influence and assistance).

We’ve already got support roles allocated to staff and students will see us on the course, in the forums, and helping out. One of the reasons that we tried to look into the future for student numbers was to work out how we would support students at this scale!

One of our most important things to remember is that completion may not mean anything in the on-line format. Someone comes on and gets an answer to the most pressing question that is holding them back from coding, but in the first week? That’s great. That’s success! How we measure that, and turn that into traditional numbers that match what we do in face-to-face, is going to be something we deal with as we get more information.

The whole team is raring to go and the launch point is so close. We’re looking forward to working with thousands of students, all over the world, for the next six weeks.

Sound interesting? Come and join us!