Grades are the fossils of evaluation

Assessments support evaluation, criticism and ranking (Wolff). That’s what it does and, in many cases, that also constitutes a lot of why we do it. But who are we doing it for?

I’ve reflected on the dual nature of evaluation, showing a student her or his level of progress and mastery while also telling us how well the learning environment is working. In my argument to reduce numerical grades to something meaningful, I’ve asked what the actual requirement is for our students, how we measure mastery and how we can build systems to provide this.

But who are the student’s grades actually for?

In terms of ranking, grades allow people who are not the student to place the students in some order. By doing this, we can award awards to students who are in the awarding an award band (repeated word use deliberate). We can restrict our job interviews to students who are summa cum laude or valedictorian or Dean’s Merit Award Winner. Certain groups of students, not all, like to define their progress through comparison so there is a degree of self-ranking but, for the most part, ranking is something that happens to students.

Criticism, in terms of providing constructive, timely feedback to assist the student, is weakly linked to any grading system. Giving someone a Fail grade isn’t a critique as it contains no clear identification of the problems. The clear identification of problems may not constitute a fail. Often these correlate but it’s weak. A student’s grades are not going to provide useful critique to the student by themselves. These grades are to allow us to work out if the student has met our assessment mechanisms to a point where they can count this course as a pre-requisite or can be awarded a degree. (Award!)

Evaluation is, as noted, useful to us and the student but a grade by itself does not contain enough record of process to be useful in evaluating how mastery goals were met and how the learning environment succeeded or failed. Competency, when applied systematically, does have a well-defined meaning. A passing grade does not although there is an implied competency and there is a loose correlation with achievement.

Grades allow us to look at all of a student’s work as if this one impression is a reflection of the student’s involvement, engagement, study, mistakes, triumphs, hopes and dreams. They are additions to a record from which we attempt to reconstruct a living, whole being.

Grades are the fossils of evaluation.

Grades provide a mechanism for us, in a proxy role as academic archaeologist, to classify students into different groups, in an attempt to project colour into grey stone, to try and understand the ecosystem that such a creature would live in, and to identify how successful this species was.

As someone who has been a student several times in my life, I’m aware that I have a fossil record that is not traditional for an academic. I was lucky to be able to place a new imprint in the record, to obscure my history as a much less successful species, and could then build upon it until I became an ACADEMIC TYRANNOSAURUS.

Skull of a Tyrannosaurus Rex at Palais de la Decouverte

LIFE LONG LEARNING, ROAARRRR!

But I’m lucky. I’m privileged. I had a level of schooling and parental influence that provided me with an excellent vocabulary and high social mobility. I live in a safe city. I have a supportive partner. And, more importantly, at a crucial moment in my life, someone who knew me told me about an opportunity that I was able to pursue despite the grades that I had set in stone. A chance came my way that I never would have thought of because I had internalised my grades as my worth.

Let’s look at the fossil record of Nick.

My original GPA fossil, encompassing everything that went wrong and right in my first degree, was 2.9. On a scale of 7, which is how we measure it, that’s well below a pass average. I’m sharing that because I want you to put that fact together with what happened next. Four years later, I started a Masters program that I finished with a GPA of 6.4. A few years after the masters, I decided to go and study wine making. That degree was 6.43. Then I received a PhD, with commendation, that is equivalent to GPA 7. (We don’t actually use GPA in research degrees. Hmmm.) If my grade record alone lobbed onto your desk you would see the desiccated and dead snapshot of how I (failed to) engage with the University system. A lot of that is on me but, amazingly, it appears that much better things were possible. That original grade record stopped me from getting interviews. Stopped me from getting jobs. When I was finally able to demonstrate the skills that I had, which weren’t bad, I was able to get work. Then I had the opportunity to rewrite my historical record.

Yes, this is personal for me. But it’s not about me because I wasn’t trapped by this. I was lucky as well as privileged. I can’t emphasise that enough. The fact that you are reading this is due to luck. That’s not a good enough mechanism.

Too many students don’t have this opportunity. That impression in the wet mud of their school life will harden into a stone straitjacket from which they may never escape. The way we measure and record grades has far too much potential to work against students and the correlation with actual ability is there but it’s not strong and it’s not always reliable.

The student you are about to send out with a GPA of 2.9 may be competent and they are, most definitely, more than that number.

The recording of grades is a high-loss storage record of the student’s learning and pathway to mastery. It allows us to conceal achievement and failure alike in the accumulation of mathematical aggregates that proxy for competence but correlate weakly.

We need assessment systems that work for the student first and everyone else second.


How does competency based assessment work?

From the previous post, I asked how many times a student has to perform a certain task, and to which standard, that we become confident that they can reliably perform the task. In the Vocational Education and Training world this is referred to as competence and this is defined (here, from the Western Australian documentation) as:

In VET, individuals are considered competent when they are able to consistently apply their knowledge and skills to the standard of performance required in the workplace.

How do we know if someone has reached that level of competency?

We know whether an individual is competent after they have completed an assessment that verifies that all aspects of the unit of competency are held and can be applied in an industry context.

The programs involved are made up of units that span the essential knowledge and are assessed through direct observation, indirect measurements (such as examination) and in talking to employers or getting references. (And we have to be careful that we are directly measuring what we think we are!)

A vintage Czech eye chart.

A direct measurement of your eyesight or your ability to memorise Czech eye-charts.

Hang on. Examinations are an indirect measurement? Yes, of course they are here, we’re looking for the ability to apply this and that requires doing rather than talking about what you would do. Your ability to perform the task in direct observation is related to how you can present that knowledge in another frame but it’s not going to be 1:1 because we’re looking at issues of different modes and mediation.

But it’s not enough just to do these tasks as you like, the specification is quite clear in this:

It can be demonstrated consistently over time, and covers a sufficient range of experiences (including those in simulated or institutional environments).

I’m sure that some of you are now howling that many of the things that we teach at University are not just something that you do, there’s a deeper mode of thinking or something innately non-Vocational about what is going on.

And, for some of you, that’s true. Any of you who are asking students to do anything in the bottom range of Bloom’s taxonomy… I’m not convinced. Right now, many assessments of concepts that we like to think of as abstract are so heavily grounded in the necessities of assessment that they become equivalent to competency-based training outcomes.

The goal may be to understand Dijkstra’s algorithm but the task is to write a piece of code that solves the algorithm for certain inputs, under certain conditions. This is, implicitly, a programming competency task and one that must be achieved before you can demonstrate any ability to show your understanding of the algorithm. But the evaluator’s perspective of Dijkstra is mediated through your programming ability, which means that this assessment is a direct measure of programming ability in language X but an indirect measure of Dijkstra. Your ability to apply Dijkstra’s algorithm would, in a competency-based frame, be located in a variety of work-related activities that could verify your ability to perform the task reliably.

All of my statistical arguments on certainty from the last post come back to a simple concept: do I have the confidence that the student can reliably perform the task under evaluation? But we add to this the following: Am I carrying out enough direct observation of the task in question to be able to make a reliable claim on this as an evaluator?

There is obvious tension, at modern Universities, between what we see as educational and what we see as vocational. Given that some of what we do falls into “workplace skills” in a real sense, although we may wish to be snooty about the workplace, why are we not using the established approaches that allow us to actually say “This student can function as an X when they leave here?”

If we want to say that we are concerned with a more abstract education, perhaps we should be teaching, assessing and talking about our students very, very differently. Especially to employers.


What do we want? Passing average or competency always?

I’m at the Australasian Computer Science Week at the moment and I’m dividing my time between attending amazing talks, asking difficult questions, catching up with friends and colleagues and doing my own usual work in the cracks.  I’ve talked to a lot of people about my ideas on assessment (and beauty) and, as always, the responses have been thoughtful, challenging and helpful.

I think I know what the basis of my problem with assessment is, taking into account all of the roles that it can take. In an earlier post, I discussed Wolff’s classification of assessment tasks into criticism, evaluation and ranking. I’ve also made earlier (grumpy) notes about ranking systems and their arbitrary nature. One of the interesting talks I attended yesterday talked about the fragility and questionable accuracy of post-University exit surveys, which are used extensively in formal and informal rankings of Universities, yet don’t actually seem to meet many of the statistical or sensible guidelines for efficacy we already have.

But let’s put aside ranking for a moment and return to criticism and evaluation. I’ve already argued (successfully I hope) for a separation of feedback and grades from the criticism perspective. While they are often tied to each other, they can be separated and the feedback can still be useful. Now let’s focus on evaluation.

Remind me why we’re evaluating our students? Well, we’re looking to see if they can perform the task, apply the skill or knowledge, and reach some defined standard. So we’re evaluating our students to guide their learning. We’re also evaluating our students to indirectly measure the efficacy of our learning environment and us as educators. (Otherwise, why is it that there are ‘triggers’ in grading patterns to bring more scrutiny on a course if everyone fails?) We’re also, often accidentally, carrying out an assessment of the innate success of each class and socio-economic grouping present in our class, among other things, but let’s drill down to evaluating the student and evaluating the learning environment. Time for another thought experiment.

Thought Experiment 2

There are twenty tasks aligned with a particularly learning outcome. It’s an important task and we evaluate it in different ways but the core knowledge or skill is the same. Each of these tasks can receive a ‘grade’ of 0, 0.5 or 1. 0 means unsuccessful, 0.5 is acceptable, 1 is excellent. Student A attempts all tasks and is acceptable in 19, unsuccessful in 1. Student B attempts the first 10 tasks, receives excellent in all of them and stops. Student C sets up a pattern of excellent,unsuccessful, excellent, unsuccessful.. and so on to receive 10 “Excellent”s and 10 “unsuccessful”s. When we form an aggregate grade, A receives 47.5%, B receives 50% and C also receives 50%. Which of these students is the most likely to successfully complete the task?

This framing allows us to look at the evaluation of the student in a meaningful way. “Who will pass the course?” is not the question we should be asking, it’s “Who will be able to reliably demonstrate mastery of the skills or knowledge that we are imparting.” Passing the course has a naturally discrete attention focus: focus on n assignments and m exams and pass. Continual demonstration of mastery is a different goal. This framing also allows us to examine the learning environment because, without looking at the design, I can’t tell you if B and C’s behaviour is problematic or not.

CompFail

A has undertaken the most tasks to an acceptable level but an artefact of grading (or bad luck) has dropped the mark below 50%, which would be a fail (aggregate less than acceptable) in many systems. B has performed excellently on every task attempted but, being aware of the marking scheme, optimising and strategic behaviour allows this student to walk away. (Many students who perform at this level wouldn’t, I’m aware, but we’re looking at the implications of this.) C has a troublesome pattern that provides the same outcome as B but with half the success rate.

Before we answer the original question (which is most likely to succeed), I can nominate C as the most likely to struggle because C has the most “unsuccessful”s. From a simple probabilistic argument, 10/20 success is worse than 19/20. It’s a bit tricker comparing 10/10 and 10/20 (because of confidence intervals) but 10/20 has an Adjusted Wald range of +/- 20% and 10/10 is -14%, so the highest possible ‘real’ measure for C is 14/20 and the lowest possible ‘real’ measure for B is (scaled) 15/20, so they don’t overlap and we can say that B appears to be more successful than C as well.

From a learning design perspective, do our evaluation artefacts have an implicit design that explains C’s pattern? Is there a difference we’re not seeing? Taking apart any ranking of likeliness to pass our evaluatory framework, C’s pattern is so unusual (high success/lack of any progress) that we learn something immediately from the pattern, whether it’s that C is struggling or that we need to review mechanisms we thought to be equivalent!

But who is more likely to succeed out of A and B? 19/20 and 10/10 are barely distinguishable in statistical terms! The question for us now is how many evaluations of a given skill or knowledge mastery are required for us to be confident of competence. This totally breaks the discrete cramming for exams and focus on assignment model because all of our science is built on the notion that evidence is accumulated through observation and the analysis of what occurred, in order to be able to construct models to predict future behaviour. In this case, our goal is to see if our students are competent.

I can never be 100% sure that my students will be able to perform a task but what is the level I’m happy with? How many times do I have to evaluate them at a skill so that I can say that x successes in y attempts constitutes a reliable outcome?

If we say that a student has to reliably succeed 90% of the time, we face the problem that just testing them ten times isn’t enough for us to be sure that they’re hitting 90%.

But the level of performance we need to be confident is quite daunting. By looking at some statistics, we can see that if we provide a student with 150 opportunities to demonstrate knowledge and they succeed at this 143 times, then it is very likely that their real success level is at least 90%.

If we say that competency is measured by a success rate that is greater than 75%, a student who achieves 10/10 has immediately met that but even succeeding at 9/9 doesn’t meet that level.

What this tells us (and reminds us) is that our learning environment design is incredibly important and it must start from a clear articulation of what success actually means, what our goals are and how we will know when our students have reached that point.

There is a grade separation between A and B but it’s artificial. I noted that it was hard to distinguish A and B statistically but there is one important difference in the lower bound of their confidence interval. A is less than 75%, B is slightly above.

Now we have to deal with the fact that A and B were both competent (if not the same) for the first ten tests and A was actually more competent than B until the 20th failed test. This has enormous implications for we structure evaluation, how many successful repetitions define success and how many ‘failures’ we can tolerate and still say that A and B are competent.

Confused? I hope not but I hope that this is making you think about evaluation in ways that you may not have done so before.

 


Is an IDE an E3? Maybe an E2?

Earlier, I split the evaluation resources of a course into:

  • E1 (the lecturer and course designer),
  • E2 (human work that can be based on rubrics, including peer assessment and casual markers),
  • E3 (complicated automated evaluation mechanisms)
  • E4 (simple automated evaluation mechanisms, often for acceptance testing)

E1 and E2 everyone tends to understand, because the culture of Prof+TA is widespread, as is the concept of peer assessment. In a Computing Course, we can define E3 as complex marking scripts that perform amazing actions in response to input (or even carry out formal analysis if we’re being really keen), with E4 as simple file checks, program compilation and dumb scripts that jam in a set of data and see what comes out.

But let’s get back to my first year, first exposure, programming class. What I want is hands-on, concrete, active participation and constructive activity and lots of it. To support that, I want the best and most immediate feedback I can provide. Now I can try to fill a room with tutors, or do a lot of peer work, but there will come times when I want to provide some sort of automated feedback.

Given how inexperienced these students are, it could be a quite a lot to expect them to get their code together and then submit it to a separate evaluation system, then interpret the results. (Remember I noted earlier on how code tracing correlates with code ability.)

Thus, the best way to get that automated feedback is probably working with the student in place. And that brings us to the Integrated Development Environment (IDE). An IDE is an application that provides facilities to computer programmers and helps them to develop software. They can be very complicated and rich (Eclipse), simple (Processing) or aimed at pedagogical support (Scratch, BlueJ, Greenfoot et al) but they are usually made up of a place in which you can assemble code (typing or dragging) and a set of buttons or tools to make things happen. These are usually quite abstract for early programmers, built on notional machines rather than requiring a detailed knowledge of hardware.

Screen Shot 2016-01-31 at 4.12.01 PM

The Processing IDE. Type in one box. Hit play. Rectangle appears.

Even simple IDEs will tell you things that provide immediate feedback. We know how these environments can have positive reception, with some demonstrated benefits, although I recommend reading Sorva et al’s “A Review of Generic Program Visualization Systems for Introductory Programming Education” to see the open research questions. In particular, people employing IDEs in teaching often worry about the time to teach the environment (as well as the language), software visualisations, concern about time on task, lack of integration and the often short lifespan of many of the simpler IDEs that are focused on pedagogical outcomes. Even for well-established systems such as BlueJ, there’s always concern over whether the investment of time in learning it is going to pay off.

In academia, time is our currency.

But let me make an aesthetic argument for IDEs, based on the feedback that I’ve already put into my beautiful model. We want to maximise feedback in a useful way for early programmers. Early programmers are still learning the language, still learning how to spell words, how to punctuate, and are building up to a grammatical understanding. An IDE can provide immediate feedback as to what the computer ‘thinks’ is going on with the program and this can help the junior programmer make immediate changes. (Some IDEs have graphical representations for object systems but we won’t discuss these any further here as the time to introduce objects is a subject of debate.)

Now there’s a lot of discussion over the readability of computer error messages but let me show you an example. What’s gone wrong in this program?

 

Screen Shot 2016-01-31 at 4.20.22 PM

See where that little red line is, just on the end of the first line? Down the bottom there’s a message that says “missing a semicolon”. In the Processing language, almost all lines end with a “;” so that section of code should read:

size(200,200);
rect(0,10,100,100);

Did you get that? That missing semicolon problem has been an issue for years because many systems report the semicolon missing on the next line, due to the way that compilers work. Here, Processing is clearly saying: Oi! Put a semi-colon on the red squiggle.

I’m an old programmer, who currently programs in Java, C++ and Processing, so typing “;” at the end of a line is second nature to me. But it’s an easy mistake for a new programmer to make because, between all of the ( and the ) and the , and the numbers and the size and the rect… what do I do with the “;”?

The Processing IDE is functioning in at least an E4 mode: simple acceptance testing that won’t let anything happen until you fix that particular problem. It’s even giving you feedback as to what’s wrong. Now this isn’t to say that it’s great but it’s certainly better than a student sitting there with her hand up for 20 minutes waiting for a tutor to have the time to come over and say “Oh, you’re missing a semicolon.”

We don’t want shotgun coding, where random fixes and bashed-in attempts are made desperately to solve a problem. We want students to get used to getting feedback on how they’re going and using this to improve what they do.

Because of Processing’s highly visual mode, I think it’s closer to E3 (complex scripting) in many ways because it can tell you if it doesn’t understand what you’re trying to do at all. Beyond just not doing something, it can clearly tell you what’s wrong.

But what if it works and then the student puts something up on the screen, a graphic of some sort and it’s not quite right? Then the student has started to become their own E2, evaluating what has happened in response to the code and using human insight to address the shortfall and make changes. Not as an expert but, with support and encouragement, a developing expertise.

Feedback is good. Immediacy is good. Student involvement is good. Code tracing is linked to coding ability. A well-designed IDE can be simple and engage the student to an extent that is potentially as high as E2, although it won’t be as rich, without using any other human evaluation resources. Even if there is no other benefit, the aesthetic argument is giving us a very strong nudge to adopt an appropriate IDE.

Maybe it’s time to hang up the command line and live in a world where IDEs can help us to get things done faster, support our students better and make our formal human evaluation resources go further.

What do you think?


US President announces CS For All. #cs4all

A literate and numerate society is an excellent goal. I’d say it’s probably our least goal for a happy, safe and stable society. But the rise in the number of programmable machines and objects has meant that being able to program or being able to think about programming can make a great deal of difference in the jobs you can hold and in the way that you can amplify your own human effort. Cars help us to go faster but computers help us to get more thinking work done. Being able to program, or knowing when it would be a good idea and how to approach it, will be essential for getting things done. 

In fact, having some computer science or programming is handy right now because so many pieces of software can be much more useful if you use their programmatic extensions. 

To give you an example, yesterday I was proof reading my first novel. I’m using the Scrivener software package and, among other features, it allows you to use Regular Expressions to search and replace text. A Regular Expression (RegEx) is a type of pattern; once defined, the computer looks for everything that matches that pattern. 

I wanted to see if, while writing, I’d accidentally written the same word twice. (Believe me, it happens over 100,000 words.) Instead of searching for duplicate words by having to type ‘of of’ or ‘and and’ into a search field and looking for hits, I can use my knowledge of CS to enter the RegEx:

\b(\w+) (\1)\b

And this will go looking for any repeated pattern of the form ‘ it it ‘ or ‘ and an d’. (The RegEx should be read as ‘find all the times that I have put two words next to the other, separated by a space, where the words are the same.) Now my hit list is every possible occurrence of this!

By using a RegEx, I found that I had written ‘some some’, a pattern I never would have thought to check for. But that’s the power of programming. When I know how to tell a computer what I actually want, I can use its power to amplify the impact of my thoughts with reduced effort on my part. 

Many of today’s applications become much more usable with a little programming. Microsoft Excel is another example where a little CS goes a long way. 

That’s why I’m excited by the US President’s announcement on CS for all. You’ll know that our own work in Australia is towards empowering creators and building confidence in all educators and students. It’s great to see such a large and funded initiative being declared for the US. Armed with more knowledge, people can use computers to help themselves and so many more.

You don’t have to be an aesthetic  philosopher or educational rebel to know that an empowered and knowledgable generation of school kids is a beautiful thing. As Mark put it, this is huge!

(Credit: whitehouse.gov)


Small evaluation, big impact.

One of the problems with any model that builds in more feedback is that we incur both the time required to produce the feedback and we also have an implicit requirement to allow students enough time to assimilate and make use of it. This second requirement is still there even if we don’t have subsequent attempts at work, as we want to build upon existing knowledge. The requirement for good feedback makes no sense without a requirement that it be useful.

But let me reiterate that pretty much all evaluation and feedback can be very valuable, no matter how small or quick, if we know what we are trying to achieve. (I’ll get to more complicated systems in later posts.)

Novice programmers often struggle with programming and this early stage of development is often going to influence if they start off thinking that they can program or not. Given that automated evaluation only really provides useful feedback once the student has got something working, novice programming classes are an ideal place to put human markers. If we can make students think “Yes, I can do this” early on, this is the emotion that they will remember. We need to get to big problems quickly, turn them into manageable issues that can be overcome, and then let motivation and curiosity take the rest.

C64_startup_animiert

That first computer experience can stay with you your whole life. (Mine was actually punch cards but they don’t blink.)

There’s an excellent summary paper on computer programming visualisation systems aimed at novice programmers, which discusses some of the key problems novices face on their path to mastery:

  1. Novices can see some concepts as code rather than the components of a dynamic process. For example, they might see objects as simply a way of containing things rather than modelling objects and their behaviours. These static perceptions prevent the students from understanding that they are designing behaviours, not just writing magic formulas.
  2. There can be significant difficulties in understanding the computer, seeing the notional machine that is the abstraction, forming a basis upon which knowledge of one language or platform could be used elsewhere.
  3. Misunderstanding fundamental concepts is common and such misconceptions can easily cause weak understanding, leaving the students in the liminal state, unable to assimilate a threshold concept and move on.
  4. Students struggle to trace programs and work out what state the program should be in. In my own community, Raymond Lister, Donna Teague, Simon, and others have clearly shown that many students struggle with the tracing of even simple programs.

If we have put human markers (E1 or E2) into a programming class and identified that these are the problems we’re looking for, we can provide immediate targeted evaluation that is also immediate constructive feedback. On the day, in response to actual issues, authentic demonstration of a solution process that students can model. This is the tightest feedback and reward loop we can offer. How does this work?

  • Program doesn’t work because of one of the key problem areas.
  • Human evaluator intervenes with student and addresses the issue, encouraging discovery inside the problem area.
  • Student tries to identify problem and explains it to evaluator in context, modelling evaluator and based on existing knowledge.
  • Evaluator provides more guidance and feedback.
  • Student continues to work on problem.
  • We hope that the student will come across the solution (or think towards it) but we may have to restart this loop.

Note that we’re not necessarily giving the solution here but we can consider leading towards this if the student is getting visibly frustrated. I’d suggest never telling a student what to type as it doesn’t address any of the problems, it just makes the student dependent upon being told the answer. Not desirable. (There’s an argument here for rich development environments that I’ll expand on later.)

Evaluation like this is formative, immediate and rich. We can even streamline it with guidelines to help the evaluators although much of this will amount to supporting students as they learn to read their own code and understand the key concepts. We should develop students simple to complex, concrete to abstract, so some problems with abstraction are to be expected, especially if we are playing near any threshold concepts.

But this is where learning designers have to be ready to say “this may cause trouble” and properly brief the evaluators who will be on the ground. If we want our evaluators to work efficiently and effectively, we have to brief them on what to expect, what to do, and how to follow up.

If you’ve missed it so far, one of our big responsibilities is training our evaluation team. It’s only by doing this that we can make sure that our evaluators aren’t getting bogged down in side issues or spending too much time with one student and doing the work for them. This training should include active scenario-based training to allow the evaluators to practise with the oversight of the educators and designers.

We have finite resources. If we want to support a room full of novices, we have to prepare for the possibility of all of them having problems at once and the only way to support that at scale is to have an excellent design and train for it.


Education is not defined by a building

I drew up a picture to show how many people appear to think about art. Now this is not to say that this is my thinking on art but you only have to go to galleries for a while to quickly pick up the sotto voce (oh, and loud) discussions about what constitutes art. Once we move beyond representative art (art that looks like real things), it can become harder for people to identify what they consider to be art.

Kitsch

This is crude and bordering on satirical. Read the text before you have a go at me over privilege and cultural capital.

I drew up this diagram in response to reading early passages from Dewey’s “Art as Experience”:

“An instructive history of modern art could be written in terms of the formation of the distinctively modern institutions of museum and exhibition gallery. (p8)
[…]
The growth of capitalism has been a powerful influence in the development of the museum as the proper home for works of art, and in the promotion of the idea that they are apart from the common life. (p8)
[…]
Why is there repulsion when the high achievements of fine art are brought into connection with common life, the life that we share with all living creatures?” (p20)

Dewey’s thinking is that we have moved from a time when art was deeply integrated into everyday life to a point where we have corralled “worthy” art into buildings called art galleries and museums, generally in response to nationalistic or capitalistic drivers, in order to construct an artefact that indicates how cultured and awesome we are. But, by doing this, we force a definition that something is art if it’s the kind of thing you’d see in an art gallery. We take art out of life, making valuable relics of old oil jars and assigning insane values to collections of oil on canvas that please the eye, and by doing so we demand that ‘high art’ cannot be part of most people’s lives.

But the gallery container is not enough to define art. We know that many people resist modernism (and post-modernism) almost reflexively, whether it’s abstract, neo-primitivist, pop,  or simply that the viewer doesn’t feel convinced that they are seeing art. Thus, in the diagram above, real art is found in galleries but there are many things found in galleries that are not art. To steal an often overheard quote: “my kids could do that”. (I’m very interested in the work of both Rothko and Malevich so I hear this a lot.) 

But let’s resist the urge to condemn people because, after we’ve wrapped art up in a bow and placed it on a pedestal, their natural interpretation of what they perceive, combined with what they already know, can lead them to a conclusion that someone must be playing a joke on them. Aesthetic sensibilities are inherently subjective and evolve over time, in response to exposure, development of depth of knowledge, and opportunity. The more we accumulate of these guiding experiences, the more likely we are to develop the cultural capital that would allow us to stand in any art gallery in the world and perceive the art, mediated by our own rich experiences.

Cultural capital is a term used to describe the assets that we have that aren’t money, in its many forms, but can still contribute to social mobility and perception of class. I wrote a long piece on it and perception here, if you’re interested. Dewey, working in the 1930s, was reacting to the institutionalisation of art and was able to observe people who were attempting to build a cultural reputation, through the purchase of ‘art that is recognised as art’, as part of their attempts to construct a new class identity. Too often, when people who are grounded in art history and knowledge look at people who can’t recognise ‘art that is accepted as art by artists’ there is an aspect of sneering, which is both unpleasant and counter-productive. However, such unpleasantness is easily balanced by those people who stand firm in artistic ignorance and, rather than quietly ignoring things that they don’t like, demand that it cannot be art and loudly deride what they see in order to challenge everyone around them to accept the art of an earlier time as the only art that there is.

Neither of these approaches is productive. Neither support the aesthetics of real discussion, nor are they honest in intent beyond a judgmental and dismissive approach. Not beautiful. Not true. Doesn’t achieve anything useful. Not good.

If this argument is seeming familiar, we can easily apply it to education because we have, for the most part, defined many things in terms of the institutions in which we find them. Everyone else who stands up and talks at people over Power Point slides for forty minutes is probably giving a presentation. Magically, when I do it in a lecture theatre at a University, I’m giving a lecture and now it has amazing educational powers! I once gave one of my lectures as a presentation and it was, to my amusement, labelled as a presentation without any suggestion of still being a lecture. When I am a famous professor, my lectures will probably start to transform into keynotes and masterclasses.

I would be recognised as an educator, despite having no teaching qualifications, primarily because I give presentations inside the designated educational box that is a University. The converse of this is that “university education” cannot be given outside of a University, which leaves every newcomer to tertiary education, whether face-to-face or on-line, with a definitional crisis that cannot be resolved in their favour. We already know that home-schooling, while highly variable in quality and intention, is a necessity in some places where the existing educational options are lacking, is often not taken seriously by the establishment. Even if the person teaching is a qualified teacher and the curriculum taught is an approved one, the words “home schooling” construct tension with our assumption that schooling must take place in boxes labelled as schools.

What is art? We need a better definition than “things I find in art galleries that I recognise as art” because there is far too much assumption in there, too much infrastructure required and there is not enough honesty about what art is. Some of the works of art we admire today were considered to be crimes against conventional art in their day! Let me put this in context. I am an artist and I have, with 1% of the talent, sold as many works as Van Gogh did in his lifetime (one). Van Gogh’s work was simply rubbish to most people who looked at it then.

And yet now he is a genius.

What is education? We need a better definition than “things that happen in schools and universities that fit my pre-conceptions of what education should look like.” We need to know so that we can recognise, learn, develop and improve education wherever we find it. The world population will peak at around 10 billion people. We will not have schools for all of them. We don’t have schools for everyone now. We may never have the infrastructure we need for this and we’re going need a better definition if we want to bring real, valuable and useful education to everyone. We define in order to clarify, to guide, and to tell us what we need to do next.