ICER 2012 Day 2 Research Session 3

The session kicked off with “The Abstraction Transition Taxonomy: Developing Desired Learning Outcomes through the Lens of Situated Cognition”, (Quintin Cutts (presenting), Sarah Esper, Marlena Fecho, Stephen Foster and Beth Simon) and the initial question: “Do our learning outcomes for programming classes match what we actually do as computational thinkers and programmers?” To answer this question, we looked Eric Mazur’s Peer Instruction, an analysis of PU questions as applied to a CS principles pilot course, and then applied the Abstraction Transition Taxonomy (ATT) to published exams, with a wrap of observations and ‘where to from here’.

Physicists have, some time ago, noticed that their students can plug numbers into equations (turn the handle, so to speak) but couldn’t necessarily demonstrate that they understood things: they couldn’t demonstrate that that they thought as physicists should. (The Force Concept Inventory was mentioned here and, if you’re not familiar, it’s a very interesting thing to look up.) To try and get students who thought as physicists, Mazur developed Peer Instruction (PI), which had pre-class prep work, in-class questions, followed by voting, discussion and re-voting, with an instructor leading class-wide discussion. These activities prime the students to engage with the correct explanations – that is, the way that physicists think about and explain problems.

Looking at Computer Science, many CS people use the delivery of a working program as a measure of the correct understanding and appropriate use of programming techniques.

Given that generating a program is no guarantee of understanding, which is sad but true given the existence of the internet, other students and books. We could try and force a situation where students are isolated from these support factors but this then leads us back to permutation programming, voodoo code and shotgun debugging unless the students actually understand the task and how to solve it using our tools. In other words, unless they think as Computer Scientists.

UCSD had a CS Principles Pilot course that used programming to foster computational thinking that was aimed at acculturation into the CS ‘way’ rather than trying to create programmers. The full PI implementation asked students to reason about their programs, through exploratory homework and a PI classroom, with some limited time traditional labs as well. While this showed a very positive response, the fear was that this may have been an effect of the lecturers themselves so analysis was required!

By analysing the PI questions, a taxonomy was developed that identified abstraction levels and the programming concepts within them. The abstraction levels were “English”, “Computer Science Speak” and “Code”. The taxonomy was extended with the transitions between these levels (turning an English question into code for example is a 1-3 transition, if English is abstraction level 1 and Code 3. Similarly, explain this code in English is 3-1). Finally, they considered mechanism (how does something work) and rationale (why did we do it this way)?

Analysing the assignment and assessment questions to determine what was being asked, in terms of abstraction level and transitions, and whether it was mechanism or rationale, revealed that 21% of the in-class multiple choice questions were ‘Why?’ questions but there actually very few ‘Why?’ questions in the exam. Unsurprisingly, almost every question asked in the PI framework is a ‘Why?’ question,  so there should be room for improvement in the corresponding examinations. PI emphasises the culture of the discipline through the ‘Why?’ framing because it requires acculturation and contextualisation to get yourself into the mental space where a Rationale becomes logical.

The next paper “Subgoal-Labeled Instructional Material Improves Performance and Transfer in Learning to Develop Mobile Applications”, Lauren Margulieux, Mark Guzdial and Richard Catrambone, dealt with mental models and how the cognitive representation of an action will affect both the problem state and how well we make predictions. Students have so much to think about – how do they choose?

The problem with just waiting for a student to figure it out is high cognitive load, which I’ve referred to before as helmet fire. If students become overwhelmed they learn nothing, so we can explicitly tell students and/or provide worked examples. If we clearly label the subgoals in a worked example, students remember the subgoals and the transition from one to another. The example given here was an Android App Inventor worked example, one example of which had no labels, the other of which had subgoal labels added as overlay callouts to the movie as the only alteration. The subgoal points were identified by task analysis – so this was a very precise attempt to get students to identify the important steps required to understand and complete the task.

(As an aside, I found this discussion very useful. It’s a bit like telling a student that they need comments and so every line has things like “x=3; //x is set to 3” whereas this structured and deliberate approach to subgoal definition shows students the key steps.)

In the first experiment that was run, the students with the subgoals (and recall that this was the ONLY difference in the material) had attempted more, achieved more and done it in less time. A week later, they still got things right more often. In the second experiment, a talk-aloud experiment, the students with the subgoals discussed the subgoals more, tried random solution strategies less and wasted less effort than the other group. This is an interesting point. App Inventor allows you to manipulate blocks of code and the subgoal group were less likely to drag out a useless block to solve the problem. The question, of course, is why. Was it the video? Was it the written aspects? Was it both?

Students appear to be remembering and using the subgoals and, as was presented, if performance is improving, perhaps the exact detail of why it’s happening is something that we wish to pursue but, in the short term, we can still use the approach. However, we do have to be careful with how many labels we use as overloading visual cues can lead to confusion, thwarting any benefit.

The final paper in the session was “Using collaboration to overcome disparities in Java experience”, Colleen Lewis (presenting), Nathaniel Titterton and Michael Clancy. This presented the transformation of a a standard 3 Lecture, 2 hours of lab and 1 discussion hour course into a 1 x 1 hour lecture with 2 x 3 hour labs, with the labs now holding the core of the pedagogy. Students are provided feedback through targeted tutoring, using on-line multiple choices for the students to give feedback and assist the TAs. Pair programming gives you someone to talk to before you talk to the TA but the TA can monitor the MCQ space and see if everyone is having a problem with a particular problem.

This was addressing a problem in a dual speed entry course, where some students had AP CS and some didn’t, therefore the second year course was either a review for those students who had Java (from AP CS) or was brand new. Collaboration and targeted support was aimed at reducing the differences between the cohorts and eliminate disadvantage.

Now, the paper has a lot of detail on the different cohorts, by intake, by gender, by retention pattern, but the upshot is that the introduction of the new program reduced the differences between those students who did and did not have previous Java experience. In other words, whether you started at UCB in CS 1 (with no AP CS) or CS  1.5 (with AP CS), the gap between your cohorts shrank – which is an excellent result. Once this high level of collaboration was introduced, the only factor that retained any significant difference was the first exam, but this effect disappeared throughout the course as students received more exposure to collaboration.

I strongly recommend reading all three of these papers!



Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s